Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 200: 116117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364638

RESUMO

Shallow coastal lagoons are vital ecosystems for many aquatic species and understanding their biodiversity is essential. Very little is known about the distribution and abundance of globally threatened marine megafauna in coastal lagoons of the Arabian Gulf. This study combined underwater and aerial surveys to investigate the distributions and relative abundance of marine megafauna in a large lagoon. We identified 13 species of megafauna including sea turtles, sharks, and rays. Eleven of these are globally threatened according to the IUCN Red List of Threatened Species. The Critically Endangered Halavi guitarfish (Glaucostegus halavi), and the Endangered green turtle (Chelonia mydas) were the most frequently occurring species. Results demonstrate the value of combining aerial and underwater video surveys to obtain spatially comprehensive data on marine megafauna in shallow coastal lagoons. This new information emphasises the importance of Umm Al Quwain lagoon for biodiversity conservation to protect threatened marine species and their habitats.


Assuntos
Ecossistema , Tartarugas , Animais , Emirados Árabes Unidos , Biodiversidade , Espécies em Perigo de Extinção
2.
Sci Total Environ ; 831: 154811, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35351501

RESUMO

Landscape modification alters the condition of ecosystems and the complexity of terrain, with consequences for animal assemblages and ecosystem functioning. In coastal seascapes, dredging is routine practice for extracting sediments and maintaining navigation channels worldwide. Dredging modifies processes and assemblages by favouring species with wide trophic niches, diverse habitat requirements and tolerances to dredge-related eutrophication and sedimentation. Dredging also transforms the three-dimensional features of the seafloor, but the functional consequences of these terrain changes remain unclear. We investigated the effects of terrain modification on the functional diversity of fish assemblages in natural and dredged estuaries to examine whether dredging programs could be optimised to minimise impacts on ecological functioning. Fish assemblages were surveyed with baited remote underwater video stations and variation in functional niche space was described using species traits to calculate metrics that index functional diversity. Terrain variation was quantified with nine complementary surface metrics including depth, aspect, curvature, slope and roughness extracted from sonar-derived bathymetry maps. Functional diversity was, surprisingly, higher in dredged estuaries, which supported more generalist species with wider functional niches, and from lower trophic levels, than natural estuaries. These positive effects of dredging on functional diversity were, however, spatially restricted and were linked to both the area and orientation of terrain modification. Functional diversity was highest in urban estuaries where dredged channels were small (i.e. <1% of the estuary), and where channel slopes were orientated towards the poles (i.e. 171-189°), promoting both terrain variation and light penetration in urban estuaries. Our findings highlight previously unrecognised functional consequences of terrain modification that can easily be incorporated into dredging programs. We demonstrate that restricting the spatial extent of dredging operations and the orientation of dredged channel slopes, wherever this is practical, could help to limit impacts on ecosystem functioning and productivity in urban seascapes.


Assuntos
Ecossistema , Oceanos e Mares , Animais , Estuários , Peixes
3.
Mar Pollut Bull ; 159: 111387, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827871

RESUMO

Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.


Assuntos
Antozoários , Recifes de Corais , Animais , Região do Caribe , Ecossistema , Peixes , Índias Ocidentais
4.
Environ Monit Assess ; 192(1): 11, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807930

RESUMO

Engineered structures in the open ocean are becoming more frequent with the expansion of the marine renewable energy industry and offshore marine aquaculture. Floating engineered structures function as artificial patch reefs providing novel and relatively stable habitat structure not otherwise available in the pelagic water column. The enhanced physical structure can increase local biodiversity and benefit fisheries yet can also facilitate the spread of invasive species. Clear evidence of any ecological consequences will inform the design and placement of structures to either minimise negative impacts or enhance ecosystem restoration. The development of rapid, cost-effective and reliable remote underwater monitoring methods is crucial to supporting evidence-based decision-making by planning authorities and developers when assessing environmental risks and benefits of offshore structures. A novel, un-baited midwater video system, PelagiCam, with motion-detection software (MotionMeerkat) for semi-automated monitoring of mobile marine fauna, was developed and tested on the UK's largest offshore rope-cultured mussel farm in Lyme Bay, southwest England. PelagiCam recorded Atlantic horse mackerel (Trachurus trachurus), garfish (Belone belone) and two species of jellyfish (Chrysaora hysoscella and Rhizostoma pulmo) in open water close to the floating farm structure. The software successfully distinguished video frames where fishes were present versus absent. The PelagiCam system provides a cost-effective remote monitoring tool to streamline biological data acquisition in impact assessments of offshore floating structures. With the rise of sophisticated artificial intelligence for object recognition, the integration of computer vision techniques should receive more attention in marine ecology and has great potential to revolutionise marine biological monitoring.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Biologia Marinha/instrumentação , Biologia Marinha/métodos , Gravação em Vídeo , Animais , Aquicultura , Biodiversidade , Computadores , Inglaterra , Peixes , Gravação em Vídeo/instrumentação
5.
Ecol Appl ; 28(4): 910-925, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29421847

RESUMO

To design effective marine reserves and support fisheries, more information on fishing patterns and impacts for targeted species is needed, as well as better understanding of their key habitats. However, fishing impacts vary geographically and are difficult to disentangle from other factors that influence targeted fish distributions. We developed a set of fishing effort and habitat layers at high resolution and employed machine learning techniques to create regional-scale seascape models and predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. Spatial patterns of fishing effort were shown to be highly variable and seascape models indicated a low threshold beyond which targeted fish assemblages were severely impacted. Topographic complexity, exposure, depth, and wave power were identified as key habitat variables that influenced targeted fish distributions and defined productive habitats for reef fisheries. High targeted reef fish biomass and body length were found in areas not easily accessed by humans, while model predictions when fishing effort was set to zero showed these high values to be more widely dispersed among suitable habitats. By comparing current targeted fish distributions with those predicted when fishing effort was removed, areas with high recovery potential on each island were revealed, with average biomass recovery of 517% and mean body length increases of 59% on Oahu, the most heavily fished island. Spatial protection of these areas would aid recovery of nearshore coral reef fisheries.


Assuntos
Biomassa , Recifes de Corais , Pesqueiros , Peixes , Modelos Teóricos , Animais , Tamanho Corporal , Havaí
6.
PLoS One ; 9(5): e96028, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24797815

RESUMO

Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40-64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.


Assuntos
Migração Animal/fisiologia , Recifes de Corais , Peixes/fisiologia , Animais , Porto Rico
7.
Environ Monit Assess ; 186(8): 4793-806, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24744210

RESUMO

The St. Thomas East End Reserves or STEER is located on the southeastern end of the island of St. Thomas, USVI. The STEER contains extensive mangroves and seagrass beds, along with coral reefs, lagoons, and cays. Within the watershed, however, are a large active landfill, numerous marinas, resorts, various commercial activities, an EPA Superfund Site, and residential areas, all of which have the potential to contribute pollutants to the STEER. As part of a project to develop an integrated assessment for the STEER, 185 chemical contaminants were analyzed in sediments from 24 sites. Higher levels of chemical contaminants were found in Mangrove Lagoon and Benner Bay in the western portion of the study area. The concentrations of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), zinc, copper, lead, and mercury were above a NOAA Effects Range-Low (ERL) sediment quality guideline at one or more sites, indicating impacts may be present in more sensitive species or life stages. Copper at one site in Benner Bay was above a NOAA Effects Range-Median (ERM) guideline indicating effects on benthic organisms were likely. The antifoulant boat hull ingredient tributyltin (TBT) was found at the third highest concentration in the history of NOAA's National Status and Trends (NS&T) Program, which monitors the nation's coastal and estuarine waters for chemical contaminants and bioeffects. The results from this project will provide resource managers with key information needed to make effective decisions affecting coral reef ecosystem health and gauge the efficacy of restoration activities.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Baías/química , DDT/análise , Ecossistema , Hidrocarbonetos Clorados/análise , Bifenilos Policlorados/análise , Compostos de Trialquitina/análise , Poluição Química da Água/estatística & dados numéricos
8.
PLoS One ; 6(5): e20583, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637787

RESUMO

Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management.


Assuntos
Biodiversidade , Recifes de Corais , Peixes/crescimento & desenvolvimento , Modelos Biológicos , Algoritmos , Animais , Área Sob a Curva , Região do Caribe , Geografia , Oceanos e Mares , Porto Rico , Análise de Regressão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA